Advanced Higher: Atomic Structure

Atomic structure at Advanced Higher focuses on refining your understanding of electrons and their placement within the atom.

Wave-particle duality

Electrons can act as a particle as you are familiar with. However, they can also act as wave. This is known as wave-particle duality.

Orbitals

The wave-particle duality allows us to define orbitals for electrons. Orbitals are mathematical representations of where electrons can be found% of the time. Each orbital can hold a maximum of electrons.
Orbitals have different names and shapes
S-orbitals
P-orbitals
D-orbitals

F-orbitals (7 orbitals, don't need to know their shapes)

Quantum nu	mbers	;
------------	-------	---

Each electron i	in an atom	has a uniqu	ue 'address'	which is
represented by	/ four			

Quantum number	Description	Letter	Possible values

Each electron has to have 4 different quantum nur	าbers.
---	--------

Representing electron arrangements

National 5/Higher recap

Advanced higher level

Electron configurations can be represented more accurately using orbital box notation or spectroscopic notation.

There are some rules to follow when doing this:

Aufbau Principle

Hund's Rule	
Pauli exclusion principle	
The orbitals within a sub shell (p or d) are means they have the same energy.	This
Examples:	
Carbon	
Chlorine	

Write the orbital box and spectroscopic notation for:

- A) lithium
- B) Aluminium
- C) neon
- D) iron

Identifying Quantum Numbers

Carbon

1s² 2s² 2p²

Electron	n	1	mı	m _s

?

Complete the table to identify quantum numbers for the electrons in fluorine. 1s² 2s² 2p⁵

Electron	n	I	m _l	m _s

Periodic table

The periodic table can be split up into regions according to the last orbital that an electron fills.

?

What block of the periodic table would an ion with 3+ charge and 60 electrons be found in?

Ionisation energy

There is a special stability associated with full or half-full sub shells. This can lead to anomalous ionisation energies due to stability of electronic arrangement.

E.g. nitrogen vs oxygen

Nitrogen electronic configuration Nitrogen first ionisation

Oxygen electronic configuration Oxygen first ionisation energy

Explanation

Valence Shell Electron Pair Repulsion (VSEPR) Theory

VSEPR theory allows us to use electrons to predict the shape of molecules or polyatomic group ions.

Rules:

Number of electrons on central atom

- + number of atoms bonded
- charge

Divide by 2 = electron pairs

number of atoms bonded = non-bonding pairs

You need to be able to state the shape of the electron pairs and the overall shape of the molecule.

Electron pairs	Shape of electron pairs	Diagram of shape
2		
3		
4		
5		
6		

The shape of a molecule is determined by the number of electron pairs and how many of those are non-bonding pairs. Electron pairs will repel to be as far apart as possible. However, this repulsion depends on the type of electron pair.

Non-bonding/Non-bonding >	non-bonding/bonding >	bonding/bonding
repulsion		repulsion

Electron pairs	Number of non- bonding pairs	Shape of molecule	Diagram
2	0		
3	0		
4	0		
5	0		
6	0		
2	2		
3	1		
3	2		
4	2		

Example (find the shape of the electron pairs and molecule)
NH_3
SF ₆
Find the shape of the electron pairs and the molecule
?
SH ₂
NH ₄ +
ICI ₄ -