N5: Metals

Metallic bonding is the electrostatic force of attraction between	
and	

Metallic elements are conductors of electricity because they contain delocalised electrons.

By reacting metals with oxygen, water and acid a reactivity series can be produced.

Metal	Symbol	Most reactive
Potassium		
	Na	Reacts with
Lithium		
	Ca	
Magnesium		
	Al	
Zinc		Reacts with
	Fe	
Tin		
	Pb	
Copper		Decete with
	Hg	Reacts with
Silver		
	Au	Least reactive

Put the metals W, X, Y and Z in order of reactivity (from most to least reactive).

Metal	Reaction with oxygen	Reaction with water	Reaction with acid
W	Fast	Fast	Fast
X	Slow	Slow	Moderate
Υ	Fast	Fast	Very fast
Z	Moderate	Moderate	Fast

Metal + oxygen ->		
E.g		
Metal + water ->	 +	
E.g.		
Metal + acid -> +		

The name of the salt depends on the acid used:

Acid	Salt name ending
Hydrochloric	
Sulfuric	
Nitric	
Phosphoric	

E.g.

Soluble salts can be made using this process:

- •
- •
- •

Metals are for	und in rocks ca	ılled	Within ores r	netals are foun	d in compounds
such as	c	r	Metals ca	n be extracted	from these ores
using differen	t methods dep	ending on the	eir reactivity.		
Metal	Symbol				
Potassium	K				
Sodium	Na	Extra	act by		
Lithium	Li				
Calcium	Ca				
Magnesium	Mg				
Aluminium	Al				
Zinc	Zn				
Iron	Fe				
Tin	Zn	Extra	act by	<u> </u>	
Lead	Pb				,
Copper	Cu				
Mercury	Hg				
Silver	Ag	Extra	act by		
Gold	Au				
	tion the metal		ompounds are		. This means
During electro	olysis an		is	3	into its
elements usir	ng	If the	e products are to	be identified t	hen
supply must l	oe used.				

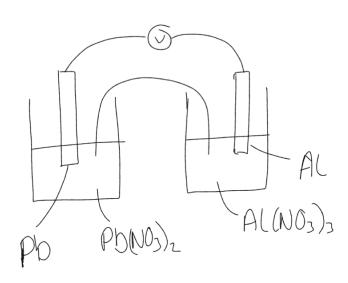
The	ions gain electrons at the negative electrode (are) and
the	ions lose electrons at the positive electrode (are).
	ss of both and happening at the same time is
You can r	member the two parts using this pneumonic:
O I L R I G	
_	the data book shows reduction ion-electron equations. To write an oxidation ou flip it over.
?	Write the ion-electron equations for the reduction of: A) Magnesium ions
B) Chlor	ne
Write the	on-electron equations for the oxidation of
C) Alum	nium
D) bromic	eions

lon-electron equations can be combined to show the resulting redox equation. To do this the electrons in each equation must be equal.

\cap	

Combine the following equations to show the full redox equation.

A)Mg
$$->$$
 Mg²⁺ + 2e⁻
Ag⁺ + e⁻ $->$ Ag


B) Al
$$\rightarrow$$
 Al³⁺ + 3e⁻
Cl₂ + 2e⁻ \rightarrow 2Cl⁻

Electrochemical cells produce	by reaction of	
Electrically conducting solutions are called _		
A simple cell consists of an	with two	

The electrons flow from the metal higher in the	(P10 of
data book) to lower. The metal which loses electrons is	and the metal
which gains is	
Half cells are more efficient. They avoid reactions between the	and the
by placing metals in a solution of their own metal.	

An	_ is used	to connect the two halve	S.		
Electrochemical cells car used for the electrode.	n be set	up using non-metal soluti	ons, in this o	case	is
Different pairs of metals	will prod	uce different	This ca	an be use	d to set
up an	_ series.	This is similar to the reac	tivity series	with some	e small
differences. (P10 of the	data boo	ok).			
The further apart on the c		nemical series the metals	are, the		the

- A)Show the direction of electron flow in the cell below
 B)Write the ion-electron equations for the oxidation and reduction reactions
- C) Write the overall redox equation
- D) Name a metal that could replace Pb to produce a larger voltage.

