N5: Systematic Organic Chemistry

Definitions

Term	Definition
Hydrocarbon	
Homologous Series	
Intermolecular forces	
Saturated	
Unsaturated	· ·
Addition reaction	
Isomer	
General formula	

Number of carbons	Prefix
1	
2	
3	
4	
5	
6	
7	
8	

Family	Prefix/suffix on name	Functional group name	Functional group formula
Alkanes			
Alkenes			
Cycloalkanes			

\boldsymbol{A}	lka	nes
$\boldsymbol{\mathcal{A}}$	ınaı	ロレン

Alkanes are a _	of	
	hydrocarbons. They are commonly used as	
	_ and are insoluble. They have a general formula	
Г		

E.g. Propane

?

Use the general formula to complete these alkane molecular formulae:

- A) C₄H_?
- B) C₇H_?
- C) C_?H₁₂
- D) C_?H₃₆

Alkenes

Alkenes are a	of
hydrocal	rbons. They are commonly used as
, to make	and alcohol. They are
insoluble. They have a general for	rmula
E.g. propene	
Use the general formulae: A) C ₂ H _? B) C ₁₀ H _? C) C ₂ H ₁₄ D) C ₂ H ₄₈	la to complete these alkane
Cycloalkanes	
Cycloalkanes are a	of
hydrocal	rbons. They are commonly used as
, and	, and are insoluble. They have a
general formula	
E.g. cylcopropane	

?

Use the general formula to complete these alkane molecular formulae:

- A) C₃H_?
- B) C₁₈H_?
- C) C₂H₂₈
- D) C_?H₃₈

Isomers

Isomers have the same molecular formula but different structural formula. They can be in the same or different homologous series.

C5H12

Draw all the possible isomers for:

Naming Rules Alkanes

- 1. Identify and name the longest chain of carbons
- 2. Number the longest chain from the end closest to the branch
- 3. Name the branches. Where there are multiple of the same branch, use the prefixes -di, -tri, -tetra. Where there are different types of branch add them to the name alphabetically.

Drawing Rules Alkanes

- 1. Start from the end of the name, draw the longest chain of carbons
- 2. Number the chain and add the branches at the correct points
- 3. Add hydrogen atoms to bring each carbon to 4 bonds

c) 2,2-dunethyl pentane 0) 2,3,5-trimethyl hexane

Naming Rules Alkenes

- 1. Identify and name the longest chain of carbons containing the double bond.
- 2. Number the longest chain from the end closest to the double bond. This number goes between the prefix and 'ene' ending.
- 3. Name the branches. Where there are multiple of the same branch, use the prefixes -di, -tri, -tetra. Where there are different types of branch add them to the name alphabetically.

Drawing Rules Alkenes

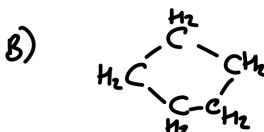
- 1. Draw the longest chain of carbons
- 2. Number the chain and add in the double bond and branches at the correct points
- 3. Add hydrogen atoms to bring each carbon to 4 bonds, taking care at the double bond carbons

2,3-dinethylbut-z-ere

Naming and Drawing Cycloalkanes

Naming:

Count the carbons and name as you would an alkane with the prefix


Drawing:

Draw the correct number of carbons in a ring, join them together. Each carbon will have two hydrogen atoms.

Cyclo hexane

?

Name/draw these molecules

Addition reactions

Alkenes undergo addition reactions because they are		
The test for unsaturation is the is due to the Br-Br bond. Very the solution This hap reactions. Unsaturated compounds will determine the solution is the	When this bond is broken opens during addition	
, compounds		
Addition of halogens in this way produces	dihaloalkanes.	
Alkenes can also undergo:		
Hydrogenation, the addition of hydrogen,	to produce alkanes.	

Hydration, the addition of water, to produce alcohols. If the alkene is asymmetrical then two products are formed.

? Draw the n

Draw the missing reagent in each reaction.